Fall23 Barry Grant Bioinformatics
DAR, pID: A69026881
fna.data <- "~/Desktop/WisconsinCancer.csv"
wisc.df <- read.csv(fna.data, row.names = 1)
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.3 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.4.4 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.0
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
head(wisc.df)
diagnosis radius_mean texture_mean perimeter_mean area_mean
842302 M 17.99 10.38 122.80 1001.0
842517 M 20.57 17.77 132.90 1326.0
84300903 M 19.69 21.25 130.00 1203.0
84348301 M 11.42 20.38 77.58 386.1
84358402 M 20.29 14.34 135.10 1297.0
843786 M 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
842302 0.11840 0.27760 0.3001 0.14710
842517 0.08474 0.07864 0.0869 0.07017
84300903 0.10960 0.15990 0.1974 0.12790
84348301 0.14250 0.28390 0.2414 0.10520
84358402 0.10030 0.13280 0.1980 0.10430
843786 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
842302 0.2419 0.07871 1.0950 0.9053 8.589
842517 0.1812 0.05667 0.5435 0.7339 3.398
84300903 0.2069 0.05999 0.7456 0.7869 4.585
84348301 0.2597 0.09744 0.4956 1.1560 3.445
84358402 0.1809 0.05883 0.7572 0.7813 5.438
843786 0.2087 0.07613 0.3345 0.8902 2.217
area_se smoothness_se compactness_se concavity_se concave.points_se
842302 153.40 0.006399 0.04904 0.05373 0.01587
842517 74.08 0.005225 0.01308 0.01860 0.01340
84300903 94.03 0.006150 0.04006 0.03832 0.02058
84348301 27.23 0.009110 0.07458 0.05661 0.01867
84358402 94.44 0.011490 0.02461 0.05688 0.01885
843786 27.19 0.007510 0.03345 0.03672 0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst
842302 0.03003 0.006193 25.38 17.33
842517 0.01389 0.003532 24.99 23.41
84300903 0.02250 0.004571 23.57 25.53
84348301 0.05963 0.009208 14.91 26.50
84358402 0.01756 0.005115 22.54 16.67
843786 0.02165 0.005082 15.47 23.75
perimeter_worst area_worst smoothness_worst compactness_worst
842302 184.60 2019.0 0.1622 0.6656
842517 158.80 1956.0 0.1238 0.1866
84300903 152.50 1709.0 0.1444 0.4245
84348301 98.87 567.7 0.2098 0.8663
84358402 152.20 1575.0 0.1374 0.2050
843786 103.40 741.6 0.1791 0.5249
concavity_worst concave.points_worst symmetry_worst
842302 0.7119 0.2654 0.4601
842517 0.2416 0.1860 0.2750
84300903 0.4504 0.2430 0.3613
84348301 0.6869 0.2575 0.6638
84358402 0.4000 0.1625 0.2364
843786 0.5355 0.1741 0.3985
fractal_dimension_worst
842302 0.11890
842517 0.08902
84300903 0.08758
84348301 0.17300
84358402 0.07678
843786 0.12440
M <- wisc.df %>% filter(diagnosis=="M")
wisc.data <- wisc.df[,-1]
diagnosis <- as.factor(wisc.df$diagnosis)
col_names <- grep("mean", colnames(wisc.data))
col_names
[1] 1 2 3 4 5 6 7 8 9 10
Q1: How many observations are in this dataset? - 569 observations
Q2: How many of the observations have a malignant diagnosis? - 212
Q3: How many variables/features in the data are suffixed with _mean? - 10
colMeans(wisc.data)
radius_mean texture_mean perimeter_mean
1.412729e+01 1.928965e+01 9.196903e+01
area_mean smoothness_mean compactness_mean
6.548891e+02 9.636028e-02 1.043410e-01
concavity_mean concave.points_mean symmetry_mean
8.879932e-02 4.891915e-02 1.811619e-01
fractal_dimension_mean radius_se texture_se
6.279761e-02 4.051721e-01 1.216853e+00
perimeter_se area_se smoothness_se
2.866059e+00 4.033708e+01 7.040979e-03
compactness_se concavity_se concave.points_se
2.547814e-02 3.189372e-02 1.179614e-02
symmetry_se fractal_dimension_se radius_worst
2.054230e-02 3.794904e-03 1.626919e+01
texture_worst perimeter_worst area_worst
2.567722e+01 1.072612e+02 8.805831e+02
smoothness_worst compactness_worst concavity_worst
1.323686e-01 2.542650e-01 2.721885e-01
concave.points_worst symmetry_worst fractal_dimension_worst
1.146062e-01 2.900756e-01 8.394582e-02
apply(wisc.data,2,sd)
radius_mean texture_mean perimeter_mean
3.524049e+00 4.301036e+00 2.429898e+01
area_mean smoothness_mean compactness_mean
3.519141e+02 1.406413e-02 5.281276e-02
concavity_mean concave.points_mean symmetry_mean
7.971981e-02 3.880284e-02 2.741428e-02
fractal_dimension_mean radius_se texture_se
7.060363e-03 2.773127e-01 5.516484e-01
perimeter_se area_se smoothness_se
2.021855e+00 4.549101e+01 3.002518e-03
compactness_se concavity_se concave.points_se
1.790818e-02 3.018606e-02 6.170285e-03
symmetry_se fractal_dimension_se radius_worst
8.266372e-03 2.646071e-03 4.833242e+00
texture_worst perimeter_worst area_worst
6.146258e+00 3.360254e+01 5.693570e+02
smoothness_worst compactness_worst concavity_worst
2.283243e-02 1.573365e-01 2.086243e-01
concave.points_worst symmetry_worst fractal_dimension_worst
6.573234e-02 6.186747e-02 1.806127e-02
wisc.pr <- prcomp(wisc.data, scale=T)
summary(wisc.pr)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
PC8 PC9 PC10 PC11 PC12 PC13 PC14
Standard deviation 0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
PC15 PC16 PC17 PC18 PC19 PC20 PC21
Standard deviation 0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
PC22 PC23 PC24 PC25 PC26 PC27 PC28
Standard deviation 0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
PC29 PC30
Standard deviation 0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
Q4: From your results, what proportion of the originial variance is captured by the first principal components (PC1)? - 44.27%
Q5: How many principal components (PCs) are required to describe at least 70% of the original variance in the data? - 3 principal components
Q6: How many PCs are required to describe at least 90% of the original variance in the data? - 7 principal components
biplot(wisc.pr)
Q7: What stands out to you about this plot? Is it easy or difficult to understand? Why? - It is very convoluted and difficult to understand.
plot(wisc.pr$x, col= diagnosis,
xlab = "PC1", ylab="PC2")
Q8: Generate a similar plot for principal components 1 and 3. What do you notice about these plots? - They look awfully similar. However, PC2 accounts for more variation (i.e. the points are more spread out across the y axis), relative to PC3.
plot(wisc.pr$x[,1], wisc.pr$x[,3], col = diagnosis,
xlab = "PC1", ylab = "PC3")
df <- as.data.frame(wisc.pr$x)
ggplot(df, aes(PC1, PC2, col= diagnosis)) +
geom_point()
pr.var <- wisc.pr$sdev^2
pr.var
[1] 1.328161e+01 5.691355e+00 2.817949e+00 1.980640e+00 1.648731e+00
[6] 1.207357e+00 6.752201e-01 4.766171e-01 4.168948e-01 3.506935e-01
[11] 2.939157e-01 2.611614e-01 2.413575e-01 1.570097e-01 9.413497e-02
[16] 7.986280e-02 5.939904e-02 5.261878e-02 4.947759e-02 3.115940e-02
[21] 2.997289e-02 2.743940e-02 2.434084e-02 1.805501e-02 1.548127e-02
[26] 8.177640e-03 6.900464e-03 1.589338e-03 7.488031e-04 1.330448e-04
pve <- pr.var/sum(pr.var)
pve
[1] 4.427203e-01 1.897118e-01 9.393163e-02 6.602135e-02 5.495768e-02
[6] 4.024522e-02 2.250734e-02 1.588724e-02 1.389649e-02 1.168978e-02
[11] 9.797190e-03 8.705379e-03 8.045250e-03 5.233657e-03 3.137832e-03
[16] 2.662093e-03 1.979968e-03 1.753959e-03 1.649253e-03 1.038647e-03
[21] 9.990965e-04 9.146468e-04 8.113613e-04 6.018336e-04 5.160424e-04
[26] 2.725880e-04 2.300155e-04 5.297793e-05 2.496010e-05 4.434827e-06
plot(pve, xlab="Principal Component",
ylab="Proportion of Variance Explained",
ylim=c(0,1), type="o")
barplot(pve, ylab="Percent of Variance Explained",
names.arg=paste0("PC", 1: length(pve)), las=2, axes=F)
axis(2, at=pve, labels=round(pve,2)*100)
#install.packages("factoextra")
library(factoextra)
Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz_eig(wisc.pr, addlabels=T)
wisc.pr$rotation["concave.points_mean", 1]
[1] -0.2608538
Q9: For the first principal component, what is the component of the loading vector for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC. - -0.26, which is a negative contribution to the first principal component.
data.scaled <- scale(wisc.data)
data.dist <- dist(data.scaled)
wisc.hclust <- hclust(data.dist, method="complete")
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
wisc.hclust.clusters <- cutree(wisc.hclust, h=19)
table(wisc.hclust.clusters, diagnosis)
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
wisc.hclust.single <- hclust(data.dist, method="single")
plot(wisc.hclust.single)
abline(h=19, col="red", lty=2)
wisc.hclust.clusters.single <- cutree(wisc.hclust.single, k=4)
wisc.hclust.avg <- hclust(data.dist, method="average")
plot(wisc.hclust.avg)
abline(h=19, col="red", lty=2)
wisc.hclust.clusters.avg <- cutree(wisc.hclust.avg, k=4)
wisc.hclust.ward <- hclust(data.dist, method="ward.D2")
plot(wisc.hclust.ward)
abline(h=19, col="red", lty=2)
Q10: Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters? - height of 19
Q12: Which method gives your favorite results for the same ‘data.dist’ dataset? Explain your reasoning. - The Ward.D2 method looks cleanest. The resulting cladogram looks the most spread out, compared to the other ones.
data.dist.pca <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(data.dist.pca, method="ward.D2")
wisc.hclust.clusters.ward <- cutree(wisc.pr.hclust, k=4)
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)
grps
1 2
216 353
table(grps, diagnosis)
diagnosis
grps B M
1 28 188
2 329 24
plot(wisc.pr$x[,1:2], col=grps)
plot(wisc.pr$x[,1:2], col=diagnosis)
g <- as.factor(grps)
levels(g)
[1] "1" "2"
g <- relevel(g,2)
levels(g)
[1] "2" "1"
plot(wisc.pr$x[,1:2], col=g)
#install.packages("rgl")
library(rgl)
plot3d(wisc.pr$x[,1:3], xlab="PC 1", ylab="PC 2", zlab="PC 3", cex=1.5, size=1, type="s", col=grps)
data.dist.pca <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(data.dist.pca, method="ward.D2")
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
table(wisc.pr.hclust.clusters, diagnosis)
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
table(diagnosis)
diagnosis
B M
357 212
Q13: How well does the newly created model with four clusters separate out the two diagnosis? - Using the hclust() with method=“complete”, this separates out the two diagnosis pretty well. The majority of benign and malignant diagnosis were correctly separated out. Using method=“ward.D2” does not do a good job of separating out benign vs malignant. Methods “single” and “average” do not separate out benign and malignant at all.
table(wisc.hclust.clusters, diagnosis)
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
table(wisc.hclust.clusters.ward, diagnosis)
diagnosis
wisc.hclust.clusters.ward B M
1 0 45
2 2 77
3 26 66
4 329 24
table(wisc.hclust.clusters.single, diagnosis)
diagnosis
wisc.hclust.clusters.single B M
1 356 209
2 1 0
3 0 2
4 0 1
table(wisc.hclust.clusters.avg, diagnosis)
diagnosis
wisc.hclust.clusters.avg B M
1 355 209
2 2 0
3 0 1
4 0 2
Q14: How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnosis? - I think this is worse at separating out the two diseases. Cluster 1 has 12 malignant cases that are misclassified at begign while Cluster 3 has 40 benign cases that are misclassified as malignant.
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc
PC1 PC2 PC3 PC4 PC5 PC6 PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
PC8 PC9 PC10 PC11 PC12 PC13 PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
PC15 PC16 PC17 PC18 PC19 PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
PC21 PC22 PC23 PC24 PC25 PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
PC27 PC28 PC29 PC30
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152 0.09638361 0.002795349 -0.019015820
plot(wisc.pr$x[,1:2], col=g)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
Q16: Which of these new patients should we prioritize for follow up based on your results? - Prioritize patient 2 for follow up because they have malignant cancer.